Whakaoti mō n
n=-1
n=2
Tohaina
Kua tāruatia ki te papatopenga
n+1-n^{2}=-1
Tangohia te n^{2} mai i ngā taha e rua.
n+1-n^{2}+1=0
Me tāpiri te 1 ki ngā taha e rua.
n+2-n^{2}=0
Tāpirihia te 1 ki te 1, ka 2.
-n^{2}+n+2=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=1 ab=-2=-2
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -n^{2}+an+bn+2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=2 b=-1
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-n^{2}+2n\right)+\left(-n+2\right)
Tuhia anō te -n^{2}+n+2 hei \left(-n^{2}+2n\right)+\left(-n+2\right).
-n\left(n-2\right)-\left(n-2\right)
Tauwehea te -n i te tuatahi me te -1 i te rōpū tuarua.
\left(n-2\right)\left(-n-1\right)
Whakatauwehea atu te kīanga pātahi n-2 mā te whakamahi i te āhuatanga tātai tohatoha.
n=2 n=-1
Hei kimi otinga whārite, me whakaoti te n-2=0 me te -n-1=0.
n+1-n^{2}=-1
Tangohia te n^{2} mai i ngā taha e rua.
n+1-n^{2}+1=0
Me tāpiri te 1 ki ngā taha e rua.
n+2-n^{2}=0
Tāpirihia te 1 ki te 1, ka 2.
-n^{2}+n+2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 2}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 1 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-1±\sqrt{1-4\left(-1\right)\times 2}}{2\left(-1\right)}
Pūrua 1.
n=\frac{-1±\sqrt{1+4\times 2}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
n=\frac{-1±\sqrt{1+8}}{2\left(-1\right)}
Whakareatia 4 ki te 2.
n=\frac{-1±\sqrt{9}}{2\left(-1\right)}
Tāpiri 1 ki te 8.
n=\frac{-1±3}{2\left(-1\right)}
Tuhia te pūtakerua o te 9.
n=\frac{-1±3}{-2}
Whakareatia 2 ki te -1.
n=\frac{2}{-2}
Nā, me whakaoti te whārite n=\frac{-1±3}{-2} ina he tāpiri te ±. Tāpiri -1 ki te 3.
n=-1
Whakawehe 2 ki te -2.
n=-\frac{4}{-2}
Nā, me whakaoti te whārite n=\frac{-1±3}{-2} ina he tango te ±. Tango 3 mai i -1.
n=2
Whakawehe -4 ki te -2.
n=-1 n=2
Kua oti te whārite te whakatau.
n+1-n^{2}=-1
Tangohia te n^{2} mai i ngā taha e rua.
n-n^{2}=-1-1
Tangohia te 1 mai i ngā taha e rua.
n-n^{2}=-2
Tangohia te 1 i te -1, ka -2.
-n^{2}+n=-2
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-n^{2}+n}{-1}=-\frac{2}{-1}
Whakawehea ngā taha e rua ki te -1.
n^{2}+\frac{1}{-1}n=-\frac{2}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
n^{2}-n=-\frac{2}{-1}
Whakawehe 1 ki te -1.
n^{2}-n=2
Whakawehe -2 ki te -1.
n^{2}-n+\left(-\frac{1}{2}\right)^{2}=2+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}-n+\frac{1}{4}=2+\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
n^{2}-n+\frac{1}{4}=\frac{9}{4}
Tāpiri 2 ki te \frac{1}{4}.
\left(n-\frac{1}{2}\right)^{2}=\frac{9}{4}
Tauwehea n^{2}-n+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n-\frac{1}{2}=\frac{3}{2} n-\frac{1}{2}=-\frac{3}{2}
Whakarūnātia.
n=2 n=-1
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}