Whakaoti mō n
n=\frac{11}{21}\approx 0.523809524
Tohaina
Kua tāruatia ki te papatopenga
n=\frac{2}{3}-\frac{1}{7}
Tangohia te \frac{1}{7} mai i ngā taha e rua.
n=\frac{14}{21}-\frac{3}{21}
Ko te maha noa iti rawa atu o 3 me 7 ko 21. Me tahuri \frac{2}{3} me \frac{1}{7} ki te hautau me te tautūnga 21.
n=\frac{14-3}{21}
Tā te mea he rite te tauraro o \frac{14}{21} me \frac{3}{21}, me tango rāua mā te tango i ō raua taurunga.
n=\frac{11}{21}
Tangohia te 3 i te 14, ka 11.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}