Tauwehe
-61\left(m-\frac{-\sqrt{1855}-5}{61}\right)\left(m-\frac{\sqrt{1855}-5}{61}\right)
Aromātai
30-10m-61m^{2}
Tohaina
Kua tāruatia ki te papatopenga
factor(-10m-61m^{2}+30)
Pahekotia te m me -11m, ka -10m.
-61m^{2}-10m+30=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
m=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-61\right)\times 30}}{2\left(-61\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m=\frac{-\left(-10\right)±\sqrt{100-4\left(-61\right)\times 30}}{2\left(-61\right)}
Pūrua -10.
m=\frac{-\left(-10\right)±\sqrt{100+244\times 30}}{2\left(-61\right)}
Whakareatia -4 ki te -61.
m=\frac{-\left(-10\right)±\sqrt{100+7320}}{2\left(-61\right)}
Whakareatia 244 ki te 30.
m=\frac{-\left(-10\right)±\sqrt{7420}}{2\left(-61\right)}
Tāpiri 100 ki te 7320.
m=\frac{-\left(-10\right)±2\sqrt{1855}}{2\left(-61\right)}
Tuhia te pūtakerua o te 7420.
m=\frac{10±2\sqrt{1855}}{2\left(-61\right)}
Ko te tauaro o -10 ko 10.
m=\frac{10±2\sqrt{1855}}{-122}
Whakareatia 2 ki te -61.
m=\frac{2\sqrt{1855}+10}{-122}
Nā, me whakaoti te whārite m=\frac{10±2\sqrt{1855}}{-122} ina he tāpiri te ±. Tāpiri 10 ki te 2\sqrt{1855}.
m=\frac{-\sqrt{1855}-5}{61}
Whakawehe 10+2\sqrt{1855} ki te -122.
m=\frac{10-2\sqrt{1855}}{-122}
Nā, me whakaoti te whārite m=\frac{10±2\sqrt{1855}}{-122} ina he tango te ±. Tango 2\sqrt{1855} mai i 10.
m=\frac{\sqrt{1855}-5}{61}
Whakawehe 10-2\sqrt{1855} ki te -122.
-61m^{2}-10m+30=-61\left(m-\frac{-\sqrt{1855}-5}{61}\right)\left(m-\frac{\sqrt{1855}-5}{61}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{-5-\sqrt{1855}}{61} mō te x_{1} me te \frac{-5+\sqrt{1855}}{61} mō te x_{2}.
-10m-61m^{2}+30
Pahekotia te m me -11m, ka -10m.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}