Whakaoti mō m
m=\frac{1}{4}=0.25
Tohaina
Kua tāruatia ki te papatopenga
m-2m-2-3\left(m-1\right)=2\left(1-4m\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te m+1.
-m-2-3\left(m-1\right)=2\left(1-4m\right)
Pahekotia te m me -2m, ka -m.
-m-2-3m+3=2\left(1-4m\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te m-1.
-4m-2+3=2\left(1-4m\right)
Pahekotia te -m me -3m, ka -4m.
-4m+1=2\left(1-4m\right)
Tāpirihia te -2 ki te 3, ka 1.
-4m+1=2-8m
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 1-4m.
-4m+1+8m=2
Me tāpiri te 8m ki ngā taha e rua.
4m+1=2
Pahekotia te -4m me 8m, ka 4m.
4m=2-1
Tangohia te 1 mai i ngā taha e rua.
4m=1
Tangohia te 1 i te 2, ka 1.
m=\frac{1}{4}
Whakawehea ngā taha e rua ki te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}