Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x\left(-x+14\right)
Tauwehea te x.
-x^{2}+14x=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-14±\sqrt{14^{2}}}{2\left(-1\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-14±14}{2\left(-1\right)}
Tuhia te pūtakerua o te 14^{2}.
x=\frac{-14±14}{-2}
Whakareatia 2 ki te -1.
x=\frac{0}{-2}
Nā, me whakaoti te whārite x=\frac{-14±14}{-2} ina he tāpiri te ±. Tāpiri -14 ki te 14.
x=0
Whakawehe 0 ki te -2.
x=-\frac{28}{-2}
Nā, me whakaoti te whārite x=\frac{-14±14}{-2} ina he tango te ±. Tango 14 mai i -14.
x=14
Whakawehe -28 ki te -2.
-x^{2}+14x=-x\left(x-14\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 0 mō te x_{1} me te 14 mō te x_{2}.