Whakaoti mō m (complex solution)
m=-\frac{-2x^{2}+2x-3}{x^{2}+1}
x\neq -i\text{ and }x\neq i
Whakaoti mō m
m=-\frac{-2x^{2}+2x-3}{x^{2}+1}
Whakaoti mō x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{-m^{2}+5m-5}-1}{m-2}\text{; }x=-\frac{\sqrt{-m^{2}+5m-5}+1}{m-2}\text{, }&m\neq 2\\x=\frac{1}{2}\text{, }&m=2\end{matrix}\right.
Whakaoti mō x
\left\{\begin{matrix}x=\frac{\sqrt{-m^{2}+5m-5}-1}{m-2}\text{; }x=-\frac{\sqrt{-m^{2}+5m-5}+1}{m-2}\text{, }&m\neq 2\text{ and }m\geq \frac{5-\sqrt{5}}{2}\text{ and }m\leq \frac{\sqrt{5}+5}{2}\\x=\frac{1}{2}\text{, }&m=2\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
mx^{2}-2\left(x-1\right)x+m=3
Me tāpiri te 3 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
mx^{2}+\left(-2x+2\right)x+m=3
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x-1.
mx^{2}-2x^{2}+2x+m=3
Whakamahia te āhuatanga tohatoha hei whakarea te -2x+2 ki te x.
mx^{2}+2x+m=3+2x^{2}
Me tāpiri te 2x^{2} ki ngā taha e rua.
mx^{2}+m=3+2x^{2}-2x
Tangohia te 2x mai i ngā taha e rua.
\left(x^{2}+1\right)m=3+2x^{2}-2x
Pahekotia ngā kīanga tau katoa e whai ana i te m.
\left(x^{2}+1\right)m=2x^{2}-2x+3
He hanga arowhānui tō te whārite.
\frac{\left(x^{2}+1\right)m}{x^{2}+1}=\frac{2x^{2}-2x+3}{x^{2}+1}
Whakawehea ngā taha e rua ki te x^{2}+1.
m=\frac{2x^{2}-2x+3}{x^{2}+1}
Mā te whakawehe ki te x^{2}+1 ka wetekia te whakareanga ki te x^{2}+1.
mx^{2}-2\left(x-1\right)x+m=3
Me tāpiri te 3 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
mx^{2}+\left(-2x+2\right)x+m=3
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x-1.
mx^{2}-2x^{2}+2x+m=3
Whakamahia te āhuatanga tohatoha hei whakarea te -2x+2 ki te x.
mx^{2}+2x+m=3+2x^{2}
Me tāpiri te 2x^{2} ki ngā taha e rua.
mx^{2}+m=3+2x^{2}-2x
Tangohia te 2x mai i ngā taha e rua.
\left(x^{2}+1\right)m=3+2x^{2}-2x
Pahekotia ngā kīanga tau katoa e whai ana i te m.
\left(x^{2}+1\right)m=2x^{2}-2x+3
He hanga arowhānui tō te whārite.
\frac{\left(x^{2}+1\right)m}{x^{2}+1}=\frac{2x^{2}-2x+3}{x^{2}+1}
Whakawehea ngā taha e rua ki te x^{2}+1.
m=\frac{2x^{2}-2x+3}{x^{2}+1}
Mā te whakawehe ki te x^{2}+1 ka wetekia te whakareanga ki te x^{2}+1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}