Tauwehe
\left(m-2n\right)\left(m+2n\right)\left(m^{2}+4n^{2}\right)
Aromātai
m^{4}-16n^{4}
Pātaitai
Algebra
m ^ { 4 } - 16 n ^ { 4 }
Tohaina
Kua tāruatia ki te papatopenga
\left(m^{2}-4n^{2}\right)\left(m^{2}+4n^{2}\right)
Tuhia anō te m^{4}-16n^{4} hei \left(m^{2}\right)^{2}-\left(4n^{2}\right)^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(m-2n\right)\left(m+2n\right)
Whakaarohia te m^{2}-4n^{2}. Tuhia anō te m^{2}-4n^{2} hei m^{2}-\left(2n\right)^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(m-2n\right)\left(m+2n\right)\left(m^{2}+4n^{2}\right)
Me tuhi anō te kīanga whakatauwehe katoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}