Tauwehe
m\left(m-10\right)\left(m-3\right)
Aromātai
m\left(m-10\right)\left(m-3\right)
Tohaina
Kua tāruatia ki te papatopenga
m\left(m^{2}-13m+30\right)
Tauwehea te m.
a+b=-13 ab=1\times 30=30
Whakaarohia te m^{2}-13m+30. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei m^{2}+am+bm+30. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-30 -2,-15 -3,-10 -5,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 30.
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
Tātaihia te tapeke mō ia takirua.
a=-10 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -13.
\left(m^{2}-10m\right)+\left(-3m+30\right)
Tuhia anō te m^{2}-13m+30 hei \left(m^{2}-10m\right)+\left(-3m+30\right).
m\left(m-10\right)-3\left(m-10\right)
Tauwehea te m i te tuatahi me te -3 i te rōpū tuarua.
\left(m-10\right)\left(m-3\right)
Whakatauwehea atu te kīanga pātahi m-10 mā te whakamahi i te āhuatanga tātai tohatoha.
m\left(m-10\right)\left(m-3\right)
Me tuhi anō te kīanga whakatauwehe katoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}