Tīpoka ki ngā ihirangi matua
Whakaoti mō m
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

m^{2}-m-\frac{3}{4}=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
m=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\left(-\frac{3}{4}\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -1 mō te b, me te -\frac{3}{4} mō te c i te ture pūrua.
m=\frac{1±2}{2}
Mahia ngā tātaitai.
m=\frac{3}{2} m=-\frac{1}{2}
Whakaotia te whārite m=\frac{1±2}{2} ina he tōrunga te ±, ina he tōraro te ±.
\left(m-\frac{3}{2}\right)\left(m+\frac{1}{2}\right)\geq 0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
m-\frac{3}{2}\leq 0 m+\frac{1}{2}\leq 0
Kia ≥0 te otinga, me ≤0 tahi, me ≥0 tahi rānei te m-\frac{3}{2} me te m+\frac{1}{2}. Whakaarohia te tauira ina he ≤0 tahi te m-\frac{3}{2} me te m+\frac{1}{2}.
m\leq -\frac{1}{2}
Te otinga e whakaea i ngā koreōrite e rua ko m\leq -\frac{1}{2}.
m+\frac{1}{2}\geq 0 m-\frac{3}{2}\geq 0
Whakaarohia te tauira ina he ≥0 tahi te m-\frac{3}{2} me te m+\frac{1}{2}.
m\geq \frac{3}{2}
Te otinga e whakaea i ngā koreōrite e rua ko m\geq \frac{3}{2}.
m\leq -\frac{1}{2}\text{; }m\geq \frac{3}{2}
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.