Whakaoti mō m
m=-3
m=4
Tohaina
Kua tāruatia ki te papatopenga
m^{2}-m-12=0
Tangohia te 12 mai i ngā taha e rua.
a+b=-1 ab=-12
Hei whakaoti i te whārite, whakatauwehea te m^{2}-m-12 mā te whakamahi i te tātai m^{2}+\left(a+b\right)m+ab=\left(m+a\right)\left(m+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-12 2,-6 3,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
1-12=-11 2-6=-4 3-4=-1
Tātaihia te tapeke mō ia takirua.
a=-4 b=3
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(m-4\right)\left(m+3\right)
Me tuhi anō te kīanga whakatauwehe \left(m+a\right)\left(m+b\right) mā ngā uara i tātaihia.
m=4 m=-3
Hei kimi otinga whārite, me whakaoti te m-4=0 me te m+3=0.
m^{2}-m-12=0
Tangohia te 12 mai i ngā taha e rua.
a+b=-1 ab=1\left(-12\right)=-12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei m^{2}+am+bm-12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-12 2,-6 3,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
1-12=-11 2-6=-4 3-4=-1
Tātaihia te tapeke mō ia takirua.
a=-4 b=3
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(m^{2}-4m\right)+\left(3m-12\right)
Tuhia anō te m^{2}-m-12 hei \left(m^{2}-4m\right)+\left(3m-12\right).
m\left(m-4\right)+3\left(m-4\right)
Tauwehea te m i te tuatahi me te 3 i te rōpū tuarua.
\left(m-4\right)\left(m+3\right)
Whakatauwehea atu te kīanga pātahi m-4 mā te whakamahi i te āhuatanga tātai tohatoha.
m=4 m=-3
Hei kimi otinga whārite, me whakaoti te m-4=0 me te m+3=0.
m^{2}-m=12
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m^{2}-m-12=12-12
Me tango 12 mai i ngā taha e rua o te whārite.
m^{2}-m-12=0
Mā te tango i te 12 i a ia ake anō ka toe ko te 0.
m=\frac{-\left(-1\right)±\sqrt{1-4\left(-12\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -1 mō b, me -12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-1\right)±\sqrt{1+48}}{2}
Whakareatia -4 ki te -12.
m=\frac{-\left(-1\right)±\sqrt{49}}{2}
Tāpiri 1 ki te 48.
m=\frac{-\left(-1\right)±7}{2}
Tuhia te pūtakerua o te 49.
m=\frac{1±7}{2}
Ko te tauaro o -1 ko 1.
m=\frac{8}{2}
Nā, me whakaoti te whārite m=\frac{1±7}{2} ina he tāpiri te ±. Tāpiri 1 ki te 7.
m=4
Whakawehe 8 ki te 2.
m=-\frac{6}{2}
Nā, me whakaoti te whārite m=\frac{1±7}{2} ina he tango te ±. Tango 7 mai i 1.
m=-3
Whakawehe -6 ki te 2.
m=4 m=-3
Kua oti te whārite te whakatau.
m^{2}-m=12
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
m^{2}-m+\left(-\frac{1}{2}\right)^{2}=12+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
m^{2}-m+\frac{1}{4}=12+\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
m^{2}-m+\frac{1}{4}=\frac{49}{4}
Tāpiri 12 ki te \frac{1}{4}.
\left(m-\frac{1}{2}\right)^{2}=\frac{49}{4}
Tauwehea m^{2}-m+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{1}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
m-\frac{1}{2}=\frac{7}{2} m-\frac{1}{2}=-\frac{7}{2}
Whakarūnātia.
m=4 m=-3
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}