Whakaoti mō m
m=-2
m=7
Tohaina
Kua tāruatia ki te papatopenga
a+b=-5 ab=-14
Hei whakaoti i te whārite, whakatauwehea te m^{2}-5m-14 mā te whakamahi i te tātai m^{2}+\left(a+b\right)m+ab=\left(m+a\right)\left(m+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-14 2,-7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -14.
1-14=-13 2-7=-5
Tātaihia te tapeke mō ia takirua.
a=-7 b=2
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(m-7\right)\left(m+2\right)
Me tuhi anō te kīanga whakatauwehe \left(m+a\right)\left(m+b\right) mā ngā uara i tātaihia.
m=7 m=-2
Hei kimi otinga whārite, me whakaoti te m-7=0 me te m+2=0.
a+b=-5 ab=1\left(-14\right)=-14
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei m^{2}+am+bm-14. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-14 2,-7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -14.
1-14=-13 2-7=-5
Tātaihia te tapeke mō ia takirua.
a=-7 b=2
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(m^{2}-7m\right)+\left(2m-14\right)
Tuhia anō te m^{2}-5m-14 hei \left(m^{2}-7m\right)+\left(2m-14\right).
m\left(m-7\right)+2\left(m-7\right)
Tauwehea te m i te tuatahi me te 2 i te rōpū tuarua.
\left(m-7\right)\left(m+2\right)
Whakatauwehea atu te kīanga pātahi m-7 mā te whakamahi i te āhuatanga tātai tohatoha.
m=7 m=-2
Hei kimi otinga whārite, me whakaoti te m-7=0 me te m+2=0.
m^{2}-5m-14=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-14\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -5 mō b, me -14 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-5\right)±\sqrt{25-4\left(-14\right)}}{2}
Pūrua -5.
m=\frac{-\left(-5\right)±\sqrt{25+56}}{2}
Whakareatia -4 ki te -14.
m=\frac{-\left(-5\right)±\sqrt{81}}{2}
Tāpiri 25 ki te 56.
m=\frac{-\left(-5\right)±9}{2}
Tuhia te pūtakerua o te 81.
m=\frac{5±9}{2}
Ko te tauaro o -5 ko 5.
m=\frac{14}{2}
Nā, me whakaoti te whārite m=\frac{5±9}{2} ina he tāpiri te ±. Tāpiri 5 ki te 9.
m=7
Whakawehe 14 ki te 2.
m=-\frac{4}{2}
Nā, me whakaoti te whārite m=\frac{5±9}{2} ina he tango te ±. Tango 9 mai i 5.
m=-2
Whakawehe -4 ki te 2.
m=7 m=-2
Kua oti te whārite te whakatau.
m^{2}-5m-14=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
m^{2}-5m-14-\left(-14\right)=-\left(-14\right)
Me tāpiri 14 ki ngā taha e rua o te whārite.
m^{2}-5m=-\left(-14\right)
Mā te tango i te -14 i a ia ake anō ka toe ko te 0.
m^{2}-5m=14
Tango -14 mai i 0.
m^{2}-5m+\left(-\frac{5}{2}\right)^{2}=14+\left(-\frac{5}{2}\right)^{2}
Whakawehea te -5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{2}. Nā, tāpiria te pūrua o te -\frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
m^{2}-5m+\frac{25}{4}=14+\frac{25}{4}
Pūruatia -\frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
m^{2}-5m+\frac{25}{4}=\frac{81}{4}
Tāpiri 14 ki te \frac{25}{4}.
\left(m-\frac{5}{2}\right)^{2}=\frac{81}{4}
Tauwehea m^{2}-5m+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{5}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
m-\frac{5}{2}=\frac{9}{2} m-\frac{5}{2}=-\frac{9}{2}
Whakarūnātia.
m=7 m=-2
Me tāpiri \frac{5}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}