Whakaoti mō m
m=\frac{3\sqrt{2}}{2}+1\approx 3.121320344
m=-\frac{3\sqrt{2}}{2}+1\approx -1.121320344
Tohaina
Kua tāruatia ki te papatopenga
m^{2}-2m-3=\frac{1}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m^{2}-2m-3-\frac{1}{2}=\frac{1}{2}-\frac{1}{2}
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.
m^{2}-2m-3-\frac{1}{2}=0
Mā te tango i te \frac{1}{2} i a ia ake anō ka toe ko te 0.
m^{2}-2m-\frac{7}{2}=0
Tango \frac{1}{2} mai i -3.
m=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-\frac{7}{2}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -2 mō b, me -\frac{7}{2} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-2\right)±\sqrt{4-4\left(-\frac{7}{2}\right)}}{2}
Pūrua -2.
m=\frac{-\left(-2\right)±\sqrt{4+14}}{2}
Whakareatia -4 ki te -\frac{7}{2}.
m=\frac{-\left(-2\right)±\sqrt{18}}{2}
Tāpiri 4 ki te 14.
m=\frac{-\left(-2\right)±3\sqrt{2}}{2}
Tuhia te pūtakerua o te 18.
m=\frac{2±3\sqrt{2}}{2}
Ko te tauaro o -2 ko 2.
m=\frac{3\sqrt{2}+2}{2}
Nā, me whakaoti te whārite m=\frac{2±3\sqrt{2}}{2} ina he tāpiri te ±. Tāpiri 2 ki te 3\sqrt{2}.
m=\frac{3\sqrt{2}}{2}+1
Whakawehe 2+3\sqrt{2} ki te 2.
m=\frac{2-3\sqrt{2}}{2}
Nā, me whakaoti te whārite m=\frac{2±3\sqrt{2}}{2} ina he tango te ±. Tango 3\sqrt{2} mai i 2.
m=-\frac{3\sqrt{2}}{2}+1
Whakawehe 2-3\sqrt{2} ki te 2.
m=\frac{3\sqrt{2}}{2}+1 m=-\frac{3\sqrt{2}}{2}+1
Kua oti te whārite te whakatau.
m^{2}-2m-3=\frac{1}{2}
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
m^{2}-2m-3-\left(-3\right)=\frac{1}{2}-\left(-3\right)
Me tāpiri 3 ki ngā taha e rua o te whārite.
m^{2}-2m=\frac{1}{2}-\left(-3\right)
Mā te tango i te -3 i a ia ake anō ka toe ko te 0.
m^{2}-2m=\frac{7}{2}
Tango -3 mai i \frac{1}{2}.
m^{2}-2m+1=\frac{7}{2}+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
m^{2}-2m+1=\frac{9}{2}
Tāpiri \frac{7}{2} ki te 1.
\left(m-1\right)^{2}=\frac{9}{2}
Tauwehea m^{2}-2m+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-1\right)^{2}}=\sqrt{\frac{9}{2}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
m-1=\frac{3\sqrt{2}}{2} m-1=-\frac{3\sqrt{2}}{2}
Whakarūnātia.
m=\frac{3\sqrt{2}}{2}+1 m=-\frac{3\sqrt{2}}{2}+1
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}