Whakaoti mō n
n=\frac{m^{2}+72}{13}
Whakaoti mō m (complex solution)
m=-\sqrt{13n-72}
m=\sqrt{13n-72}
Whakaoti mō m
m=\sqrt{13n-72}
m=-\sqrt{13n-72}\text{, }n\geq \frac{72}{13}
Tohaina
Kua tāruatia ki te papatopenga
-13n+72=-m^{2}
Tangohia te m^{2} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-13n=-m^{2}-72
Tangohia te 72 mai i ngā taha e rua.
\frac{-13n}{-13}=\frac{-m^{2}-72}{-13}
Whakawehea ngā taha e rua ki te -13.
n=\frac{-m^{2}-72}{-13}
Mā te whakawehe ki te -13 ka wetekia te whakareanga ki te -13.
n=\frac{m^{2}+72}{13}
Whakawehe -m^{2}-72 ki te -13.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}