Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

m^{2}-12m+10=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
m=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 10}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m=\frac{-\left(-12\right)±\sqrt{144-4\times 10}}{2}
Pūrua -12.
m=\frac{-\left(-12\right)±\sqrt{144-40}}{2}
Whakareatia -4 ki te 10.
m=\frac{-\left(-12\right)±\sqrt{104}}{2}
Tāpiri 144 ki te -40.
m=\frac{-\left(-12\right)±2\sqrt{26}}{2}
Tuhia te pūtakerua o te 104.
m=\frac{12±2\sqrt{26}}{2}
Ko te tauaro o -12 ko 12.
m=\frac{2\sqrt{26}+12}{2}
Nā, me whakaoti te whārite m=\frac{12±2\sqrt{26}}{2} ina he tāpiri te ±. Tāpiri 12 ki te 2\sqrt{26}.
m=\sqrt{26}+6
Whakawehe 12+2\sqrt{26} ki te 2.
m=\frac{12-2\sqrt{26}}{2}
Nā, me whakaoti te whārite m=\frac{12±2\sqrt{26}}{2} ina he tango te ±. Tango 2\sqrt{26} mai i 12.
m=6-\sqrt{26}
Whakawehe 12-2\sqrt{26} ki te 2.
m^{2}-12m+10=\left(m-\left(\sqrt{26}+6\right)\right)\left(m-\left(6-\sqrt{26}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 6+\sqrt{26} mō te x_{1} me te 6-\sqrt{26} mō te x_{2}.