Whakaoti mō m
m = \frac{\sqrt{41} - 3}{2} \approx 1.701562119
m=\frac{-\sqrt{41}-3}{2}\approx -4.701562119
Tohaina
Kua tāruatia ki te papatopenga
2m^{2}+6m+13+16=45
Pahekotia te m^{2} me m^{2}, ka 2m^{2}.
2m^{2}+6m+29=45
Tāpirihia te 13 ki te 16, ka 29.
2m^{2}+6m+29-45=0
Tangohia te 45 mai i ngā taha e rua.
2m^{2}+6m-16=0
Tangohia te 45 i te 29, ka -16.
m=\frac{-6±\sqrt{6^{2}-4\times 2\left(-16\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 6 mō b, me -16 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-6±\sqrt{36-4\times 2\left(-16\right)}}{2\times 2}
Pūrua 6.
m=\frac{-6±\sqrt{36-8\left(-16\right)}}{2\times 2}
Whakareatia -4 ki te 2.
m=\frac{-6±\sqrt{36+128}}{2\times 2}
Whakareatia -8 ki te -16.
m=\frac{-6±\sqrt{164}}{2\times 2}
Tāpiri 36 ki te 128.
m=\frac{-6±2\sqrt{41}}{2\times 2}
Tuhia te pūtakerua o te 164.
m=\frac{-6±2\sqrt{41}}{4}
Whakareatia 2 ki te 2.
m=\frac{2\sqrt{41}-6}{4}
Nā, me whakaoti te whārite m=\frac{-6±2\sqrt{41}}{4} ina he tāpiri te ±. Tāpiri -6 ki te 2\sqrt{41}.
m=\frac{\sqrt{41}-3}{2}
Whakawehe -6+2\sqrt{41} ki te 4.
m=\frac{-2\sqrt{41}-6}{4}
Nā, me whakaoti te whārite m=\frac{-6±2\sqrt{41}}{4} ina he tango te ±. Tango 2\sqrt{41} mai i -6.
m=\frac{-\sqrt{41}-3}{2}
Whakawehe -6-2\sqrt{41} ki te 4.
m=\frac{\sqrt{41}-3}{2} m=\frac{-\sqrt{41}-3}{2}
Kua oti te whārite te whakatau.
2m^{2}+6m+13+16=45
Pahekotia te m^{2} me m^{2}, ka 2m^{2}.
2m^{2}+6m+29=45
Tāpirihia te 13 ki te 16, ka 29.
2m^{2}+6m=45-29
Tangohia te 29 mai i ngā taha e rua.
2m^{2}+6m=16
Tangohia te 29 i te 45, ka 16.
\frac{2m^{2}+6m}{2}=\frac{16}{2}
Whakawehea ngā taha e rua ki te 2.
m^{2}+\frac{6}{2}m=\frac{16}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
m^{2}+3m=\frac{16}{2}
Whakawehe 6 ki te 2.
m^{2}+3m=8
Whakawehe 16 ki te 2.
m^{2}+3m+\left(\frac{3}{2}\right)^{2}=8+\left(\frac{3}{2}\right)^{2}
Whakawehea te 3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2}. Nā, tāpiria te pūrua o te \frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
m^{2}+3m+\frac{9}{4}=8+\frac{9}{4}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
m^{2}+3m+\frac{9}{4}=\frac{41}{4}
Tāpiri 8 ki te \frac{9}{4}.
\left(m+\frac{3}{2}\right)^{2}=\frac{41}{4}
Tauwehea m^{2}+3m+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+\frac{3}{2}\right)^{2}}=\sqrt{\frac{41}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
m+\frac{3}{2}=\frac{\sqrt{41}}{2} m+\frac{3}{2}=-\frac{\sqrt{41}}{2}
Whakarūnātia.
m=\frac{\sqrt{41}-3}{2} m=\frac{-\sqrt{41}-3}{2}
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}