Tīpoka ki ngā ihirangi matua
Whakaoti mō m
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

m^{2}-144=0
Tangohia te 444 i te 300, ka -144.
\left(m-12\right)\left(m+12\right)=0
Whakaarohia te m^{2}-144. Tuhia anō te m^{2}-144 hei m^{2}-12^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
m=12 m=-12
Hei kimi otinga whārite, me whakaoti te m-12=0 me te m+12=0.
m^{2}-144=0
Tangohia te 444 i te 300, ka -144.
m^{2}=144
Me tāpiri te 144 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
m=12 m=-12
Tuhia te pūtakerua o ngā taha e rua o te whārite.
m^{2}-144=0
Tangohia te 444 i te 300, ka -144.
m=\frac{0±\sqrt{0^{2}-4\left(-144\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -144 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{0±\sqrt{-4\left(-144\right)}}{2}
Pūrua 0.
m=\frac{0±\sqrt{576}}{2}
Whakareatia -4 ki te -144.
m=\frac{0±24}{2}
Tuhia te pūtakerua o te 576.
m=12
Nā, me whakaoti te whārite m=\frac{0±24}{2} ina he tāpiri te ±. Whakawehe 24 ki te 2.
m=-12
Nā, me whakaoti te whārite m=\frac{0±24}{2} ina he tango te ±. Whakawehe -24 ki te 2.
m=12 m=-12
Kua oti te whārite te whakatau.