Whakaoti mō m
m=2\sqrt{46}-13\approx 0.564659966
m=-2\sqrt{46}-13\approx -26.564659966
Tohaina
Kua tāruatia ki te papatopenga
m^{2}+26m-15=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m=\frac{-26±\sqrt{26^{2}-4\left(-15\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 26 mō b, me -15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-26±\sqrt{676-4\left(-15\right)}}{2}
Pūrua 26.
m=\frac{-26±\sqrt{676+60}}{2}
Whakareatia -4 ki te -15.
m=\frac{-26±\sqrt{736}}{2}
Tāpiri 676 ki te 60.
m=\frac{-26±4\sqrt{46}}{2}
Tuhia te pūtakerua o te 736.
m=\frac{4\sqrt{46}-26}{2}
Nā, me whakaoti te whārite m=\frac{-26±4\sqrt{46}}{2} ina he tāpiri te ±. Tāpiri -26 ki te 4\sqrt{46}.
m=2\sqrt{46}-13
Whakawehe -26+4\sqrt{46} ki te 2.
m=\frac{-4\sqrt{46}-26}{2}
Nā, me whakaoti te whārite m=\frac{-26±4\sqrt{46}}{2} ina he tango te ±. Tango 4\sqrt{46} mai i -26.
m=-2\sqrt{46}-13
Whakawehe -26-4\sqrt{46} ki te 2.
m=2\sqrt{46}-13 m=-2\sqrt{46}-13
Kua oti te whārite te whakatau.
m^{2}+26m-15=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
m^{2}+26m-15-\left(-15\right)=-\left(-15\right)
Me tāpiri 15 ki ngā taha e rua o te whārite.
m^{2}+26m=-\left(-15\right)
Mā te tango i te -15 i a ia ake anō ka toe ko te 0.
m^{2}+26m=15
Tango -15 mai i 0.
m^{2}+26m+13^{2}=15+13^{2}
Whakawehea te 26, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 13. Nā, tāpiria te pūrua o te 13 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
m^{2}+26m+169=15+169
Pūrua 13.
m^{2}+26m+169=184
Tāpiri 15 ki te 169.
\left(m+13\right)^{2}=184
Tauwehea m^{2}+26m+169. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+13\right)^{2}}=\sqrt{184}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
m+13=2\sqrt{46} m+13=-2\sqrt{46}
Whakarūnātia.
m=2\sqrt{46}-13 m=-2\sqrt{46}-13
Me tango 13 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}