Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(m^{2}+2-2m\right)m^{2}}{m^{2}}+\frac{1}{m^{2}}-\frac{2}{m}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia m^{2}+2-2m ki te \frac{m^{2}}{m^{2}}.
\frac{\left(m^{2}+2-2m\right)m^{2}+1}{m^{2}}-\frac{2}{m}
Tā te mea he rite te tauraro o \frac{\left(m^{2}+2-2m\right)m^{2}}{m^{2}} me \frac{1}{m^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{m^{4}+2m^{2}-2m^{3}+1}{m^{2}}-\frac{2}{m}
Mahia ngā whakarea i roto o \left(m^{2}+2-2m\right)m^{2}+1.
\frac{m^{4}+2m^{2}-2m^{3}+1}{m^{2}}-\frac{2m}{m^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o m^{2} me m ko m^{2}. Whakareatia \frac{2}{m} ki te \frac{m}{m}.
\frac{m^{4}+2m^{2}-2m^{3}+1-2m}{m^{2}}
Tā te mea he rite te tauraro o \frac{m^{4}+2m^{2}-2m^{3}+1}{m^{2}} me \frac{2m}{m^{2}}, me tango rāua mā te tango i ō raua taurunga.