Whakaoti mō m
m=\frac{3p-7}{2}
Whakaoti mō p
p=\frac{2m+7}{3}
Tohaina
Kua tāruatia ki te papatopenga
m=7-3p+3m
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te p-m.
m-3m=7-3p
Tangohia te 3m mai i ngā taha e rua.
-2m=7-3p
Pahekotia te m me -3m, ka -2m.
\frac{-2m}{-2}=\frac{7-3p}{-2}
Whakawehea ngā taha e rua ki te -2.
m=\frac{7-3p}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
m=\frac{3p-7}{2}
Whakawehe 7-3p ki te -2.
m=7-3p+3m
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te p-m.
7-3p+3m=m
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-3p+3m=m-7
Tangohia te 7 mai i ngā taha e rua.
-3p=m-7-3m
Tangohia te 3m mai i ngā taha e rua.
-3p=-2m-7
Pahekotia te m me -3m, ka -2m.
\frac{-3p}{-3}=\frac{-2m-7}{-3}
Whakawehea ngā taha e rua ki te -3.
p=\frac{-2m-7}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
p=\frac{2m+7}{3}
Whakawehe -2m-7 ki te -3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}