Whakaoti mō x
x=-\frac{3\left(2m-5\right)}{3-m}
m\neq 3
Whakaoti mō m
m=-\frac{3\left(5-x\right)}{x-6}
x\neq 6
Graph
Tohaina
Kua tāruatia ki te papatopenga
m\left(x-6\right)=x-3+\left(x-6\right)\times 2
Tē taea kia ōrite te tāupe x ki 6 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x-6.
mx-6m=x-3+\left(x-6\right)\times 2
Whakamahia te āhuatanga tohatoha hei whakarea te m ki te x-6.
mx-6m=x-3+2x-12
Whakamahia te āhuatanga tohatoha hei whakarea te x-6 ki te 2.
mx-6m=3x-3-12
Pahekotia te x me 2x, ka 3x.
mx-6m=3x-15
Tangohia te 12 i te -3, ka -15.
mx-6m-3x=-15
Tangohia te 3x mai i ngā taha e rua.
mx-3x=-15+6m
Me tāpiri te 6m ki ngā taha e rua.
\left(m-3\right)x=-15+6m
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(m-3\right)x=6m-15
He hanga arowhānui tō te whārite.
\frac{\left(m-3\right)x}{m-3}=\frac{6m-15}{m-3}
Whakawehea ngā taha e rua ki te m-3.
x=\frac{6m-15}{m-3}
Mā te whakawehe ki te m-3 ka wetekia te whakareanga ki te m-3.
x=\frac{3\left(2m-5\right)}{m-3}
Whakawehe 6m-15 ki te m-3.
x=\frac{3\left(2m-5\right)}{m-3}\text{, }x\neq 6
Tē taea kia ōrite te tāupe x ki 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}