Tīpoka ki ngā ihirangi matua
Whakaoti mō m
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{m}{-\frac{1}{8}}\sqrt{\frac{25}{4}}\sqrt{\left(\frac{8}{3}\right)^{2}}=3^{-1}
Tātaihia te -\frac{1}{2} mā te pū o 3, kia riro ko -\frac{1}{8}.
\frac{m}{-\frac{1}{8}}\times \frac{5}{2}\sqrt{\left(\frac{8}{3}\right)^{2}}=3^{-1}
Tuhia anō te pūtake rua o te whakawehenga \frac{25}{4} hei whakawehenga o ngā pūtake rua \frac{\sqrt{25}}{\sqrt{4}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{m}{-\frac{1}{8}}\times \frac{5}{2}\sqrt{\frac{64}{9}}=3^{-1}
Tātaihia te \frac{8}{3} mā te pū o 2, kia riro ko \frac{64}{9}.
\frac{m}{-\frac{1}{8}}\times \frac{5}{2}\times \frac{8}{3}=3^{-1}
Tuhia anō te pūtake rua o te whakawehenga \frac{64}{9} hei whakawehenga o ngā pūtake rua \frac{\sqrt{64}}{\sqrt{9}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{m}{-\frac{1}{8}}\times \frac{20}{3}=3^{-1}
Whakareatia te \frac{5}{2} ki te \frac{8}{3}, ka \frac{20}{3}.
\frac{m}{-\frac{1}{8}}\times \frac{20}{3}=\frac{1}{3}
Tātaihia te 3 mā te pū o -1, kia riro ko \frac{1}{3}.
\frac{m}{-\frac{1}{8}}=\frac{1}{3}\times \frac{3}{20}
Me whakarea ngā taha e rua ki te \frac{3}{20}, te tau utu o \frac{20}{3}.
\frac{m}{-\frac{1}{8}}=\frac{1}{20}
Whakareatia te \frac{1}{3} ki te \frac{3}{20}, ka \frac{1}{20}.
m=\frac{1}{20}\left(-\frac{1}{8}\right)
Me whakarea ngā taha e rua ki te -\frac{1}{8}.
m=-\frac{1}{160}
Whakareatia te \frac{1}{20} ki te -\frac{1}{8}, ka -\frac{1}{160}.