Whakaoti mō m
m=p-\frac{x}{n}
n\neq 0
Whakaoti mō n
\left\{\begin{matrix}n=-\frac{x}{m-p}\text{, }&x\neq 0\text{ and }m\neq p\\n\neq 0\text{, }&m=p\text{ and }x=0\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
nm+x=pn
Whakareatia ngā taha e rua o te whārite ki te n.
nm=pn-x
Tangohia te x mai i ngā taha e rua.
nm=np-x
He hanga arowhānui tō te whārite.
\frac{nm}{n}=\frac{np-x}{n}
Whakawehea ngā taha e rua ki te n.
m=\frac{np-x}{n}
Mā te whakawehe ki te n ka wetekia te whakareanga ki te n.
m=p-\frac{x}{n}
Whakawehe pn-x ki te n.
nm+x=pn
Tē taea kia ōrite te tāupe n ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te n.
nm+x-pn=0
Tangohia te pn mai i ngā taha e rua.
nm-pn=-x
Tangohia te x mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\left(m-p\right)n=-x
Pahekotia ngā kīanga tau katoa e whai ana i te n.
\frac{\left(m-p\right)n}{m-p}=-\frac{x}{m-p}
Whakawehea ngā taha e rua ki te m-p.
n=-\frac{x}{m-p}
Mā te whakawehe ki te m-p ka wetekia te whakareanga ki te m-p.
n=-\frac{x}{m-p}\text{, }n\neq 0
Tē taea kia ōrite te tāupe n ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}