Whakaoti mō L
L=\frac{4\sqrt{2}}{k}
k\neq 0
Whakaoti mō k
k=\frac{4\sqrt{2}}{L}
L\neq 0
Tohaina
Kua tāruatia ki te papatopenga
kL=\sqrt{\left(-4\right)^{2}+\left(-2-2\right)^{2}+\left(0-0\right)^{2}}
Tangohia te 2 i te -2, ka -4.
kL=\sqrt{16+\left(-2-2\right)^{2}+\left(0-0\right)^{2}}
Tātaihia te -4 mā te pū o 2, kia riro ko 16.
kL=\sqrt{16+\left(-4\right)^{2}+\left(0-0\right)^{2}}
Tangohia te 2 i te -2, ka -4.
kL=\sqrt{16+16+\left(0-0\right)^{2}}
Tātaihia te -4 mā te pū o 2, kia riro ko 16.
kL=\sqrt{32+\left(0-0\right)^{2}}
Tāpirihia te 16 ki te 16, ka 32.
kL=\sqrt{32+0^{2}}
Mā te tango i te 0 i a ia ake anō ka toe ko te 0.
kL=\sqrt{32+0}
Tātaihia te 0 mā te pū o 2, kia riro ko 0.
kL=\sqrt{32}
Tāpirihia te 32 ki te 0, ka 32.
kL=4\sqrt{2}
Tauwehea te 32=4^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 2} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{2}. Tuhia te pūtakerua o te 4^{2}.
\frac{kL}{k}=\frac{4\sqrt{2}}{k}
Whakawehea ngā taha e rua ki te k.
L=\frac{4\sqrt{2}}{k}
Mā te whakawehe ki te k ka wetekia te whakareanga ki te k.
kL=\sqrt{\left(-4\right)^{2}+\left(-2-2\right)^{2}+\left(0-0\right)^{2}}
Tangohia te 2 i te -2, ka -4.
kL=\sqrt{16+\left(-2-2\right)^{2}+\left(0-0\right)^{2}}
Tātaihia te -4 mā te pū o 2, kia riro ko 16.
kL=\sqrt{16+\left(-4\right)^{2}+\left(0-0\right)^{2}}
Tangohia te 2 i te -2, ka -4.
kL=\sqrt{16+16+\left(0-0\right)^{2}}
Tātaihia te -4 mā te pū o 2, kia riro ko 16.
kL=\sqrt{32+\left(0-0\right)^{2}}
Tāpirihia te 16 ki te 16, ka 32.
kL=\sqrt{32+0^{2}}
Mā te tango i te 0 i a ia ake anō ka toe ko te 0.
kL=\sqrt{32+0}
Tātaihia te 0 mā te pū o 2, kia riro ko 0.
kL=\sqrt{32}
Tāpirihia te 32 ki te 0, ka 32.
kL=4\sqrt{2}
Tauwehea te 32=4^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 2} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{2}. Tuhia te pūtakerua o te 4^{2}.
Lk=4\sqrt{2}
He hanga arowhānui tō te whārite.
\frac{Lk}{L}=\frac{4\sqrt{2}}{L}
Whakawehea ngā taha e rua ki te L.
k=\frac{4\sqrt{2}}{L}
Mā te whakawehe ki te L ka wetekia te whakareanga ki te L.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}