Aromātai
13k
Kimi Pārōnaki e ai ki k
13
Tohaina
Kua tāruatia ki te papatopenga
\left(4k+k\sqrt{3}\right)\left(4-\sqrt{3}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te k ki te 4+\sqrt{3}.
16k-4\sqrt{3}k+4k\sqrt{3}-k\left(\sqrt{3}\right)^{2}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 4k+k\sqrt{3} ki ia tau o 4-\sqrt{3}.
16k-k\left(\sqrt{3}\right)^{2}
Pahekotia te -4\sqrt{3}k me 4k\sqrt{3}, ka 0.
16k-k\times 3
Ko te pūrua o \sqrt{3} ko 3.
16k-3k
Whakareatia te -1 ki te 3, ka -3.
13k
Pahekotia te 16k me -3k, ka 13k.
\frac{\mathrm{d}}{\mathrm{d}k}(\left(4k+k\sqrt{3}\right)\left(4-\sqrt{3}\right))
Whakamahia te āhuatanga tohatoha hei whakarea te k ki te 4+\sqrt{3}.
\frac{\mathrm{d}}{\mathrm{d}k}(16k-4\sqrt{3}k+4k\sqrt{3}-k\left(\sqrt{3}\right)^{2})
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 4k+k\sqrt{3} ki ia tau o 4-\sqrt{3}.
\frac{\mathrm{d}}{\mathrm{d}k}(16k-k\left(\sqrt{3}\right)^{2})
Pahekotia te -4\sqrt{3}k me 4k\sqrt{3}, ka 0.
\frac{\mathrm{d}}{\mathrm{d}k}(16k-k\times 3)
Ko te pūrua o \sqrt{3} ko 3.
\frac{\mathrm{d}}{\mathrm{d}k}(16k-3k)
Whakareatia te -1 ki te 3, ka -3.
\frac{\mathrm{d}}{\mathrm{d}k}(13k)
Pahekotia te 16k me -3k, ka 13k.
13k^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
13k^{0}
Tango 1 mai i 1.
13\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
13
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}