Tīpoka ki ngā ihirangi matua
Whakaoti mō k
Tick mark Image
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

kx^{2}+2kx+x+k-1=0
Whakamahia te āhuatanga tohatoha hei whakarea te 2k+1 ki te x.
kx^{2}+2kx+k-1=-x
Tangohia te x mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
kx^{2}+2kx+k=-x+1
Me tāpiri te 1 ki ngā taha e rua.
\left(x^{2}+2x+1\right)k=-x+1
Pahekotia ngā kīanga tau katoa e whai ana i te k.
\left(x^{2}+2x+1\right)k=1-x
He hanga arowhānui tō te whārite.
\frac{\left(x^{2}+2x+1\right)k}{x^{2}+2x+1}=\frac{1-x}{x^{2}+2x+1}
Whakawehea ngā taha e rua ki te x^{2}+2x+1.
k=\frac{1-x}{x^{2}+2x+1}
Mā te whakawehe ki te x^{2}+2x+1 ka wetekia te whakareanga ki te x^{2}+2x+1.
k=\frac{1-x}{\left(x+1\right)^{2}}
Whakawehe -x+1 ki te x^{2}+2x+1.