Tīpoka ki ngā ihirangi matua
Whakaoti mō k
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

k^{2}-k-4=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
k=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\left(-4\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -1 mō te b, me te -4 mō te c i te ture pūrua.
k=\frac{1±\sqrt{17}}{2}
Mahia ngā tātaitai.
k=\frac{\sqrt{17}+1}{2} k=\frac{1-\sqrt{17}}{2}
Whakaotia te whārite k=\frac{1±\sqrt{17}}{2} ina he tōrunga te ±, ina he tōraro te ±.
\left(k-\frac{\sqrt{17}+1}{2}\right)\left(k-\frac{1-\sqrt{17}}{2}\right)>0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
k-\frac{\sqrt{17}+1}{2}<0 k-\frac{1-\sqrt{17}}{2}<0
Kia tōrunga te otinga, me tōraro tahi te k-\frac{\sqrt{17}+1}{2} me te k-\frac{1-\sqrt{17}}{2}, me tōrunga tahi rānei. Whakaarohia te tauira ina he tōraro tahi te k-\frac{\sqrt{17}+1}{2} me te k-\frac{1-\sqrt{17}}{2}.
k<\frac{1-\sqrt{17}}{2}
Te otinga e whakaea i ngā koreōrite e rua ko k<\frac{1-\sqrt{17}}{2}.
k-\frac{1-\sqrt{17}}{2}>0 k-\frac{\sqrt{17}+1}{2}>0
Whakaarohia te tauira ina he tōrunga tahi te k-\frac{\sqrt{17}+1}{2} me te k-\frac{1-\sqrt{17}}{2}.
k>\frac{\sqrt{17}+1}{2}
Te otinga e whakaea i ngā koreōrite e rua ko k>\frac{\sqrt{17}+1}{2}.
k<\frac{1-\sqrt{17}}{2}\text{; }k>\frac{\sqrt{17}+1}{2}
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.