Whakaoti mō k
k=-4
k=36
Tohaina
Kua tāruatia ki te papatopenga
k^{2}-32k-144=0
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 8k+36.
a+b=-32 ab=-144
Hei whakaoti i te whārite, whakatauwehea te k^{2}-32k-144 mā te whakamahi i te tātai k^{2}+\left(a+b\right)k+ab=\left(k+a\right)\left(k+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-144 2,-72 3,-48 4,-36 6,-24 8,-18 9,-16 12,-12
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -144.
1-144=-143 2-72=-70 3-48=-45 4-36=-32 6-24=-18 8-18=-10 9-16=-7 12-12=0
Tātaihia te tapeke mō ia takirua.
a=-36 b=4
Ko te otinga te takirua ka hoatu i te tapeke -32.
\left(k-36\right)\left(k+4\right)
Me tuhi anō te kīanga whakatauwehe \left(k+a\right)\left(k+b\right) mā ngā uara i tātaihia.
k=36 k=-4
Hei kimi otinga whārite, me whakaoti te k-36=0 me te k+4=0.
k^{2}-32k-144=0
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 8k+36.
a+b=-32 ab=1\left(-144\right)=-144
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei k^{2}+ak+bk-144. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-144 2,-72 3,-48 4,-36 6,-24 8,-18 9,-16 12,-12
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -144.
1-144=-143 2-72=-70 3-48=-45 4-36=-32 6-24=-18 8-18=-10 9-16=-7 12-12=0
Tātaihia te tapeke mō ia takirua.
a=-36 b=4
Ko te otinga te takirua ka hoatu i te tapeke -32.
\left(k^{2}-36k\right)+\left(4k-144\right)
Tuhia anō te k^{2}-32k-144 hei \left(k^{2}-36k\right)+\left(4k-144\right).
k\left(k-36\right)+4\left(k-36\right)
Tauwehea te k i te tuatahi me te 4 i te rōpū tuarua.
\left(k-36\right)\left(k+4\right)
Whakatauwehea atu te kīanga pātahi k-36 mā te whakamahi i te āhuatanga tātai tohatoha.
k=36 k=-4
Hei kimi otinga whārite, me whakaoti te k-36=0 me te k+4=0.
k^{2}-32k-144=0
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 8k+36.
k=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\left(-144\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -32 mō b, me -144 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-\left(-32\right)±\sqrt{1024-4\left(-144\right)}}{2}
Pūrua -32.
k=\frac{-\left(-32\right)±\sqrt{1024+576}}{2}
Whakareatia -4 ki te -144.
k=\frac{-\left(-32\right)±\sqrt{1600}}{2}
Tāpiri 1024 ki te 576.
k=\frac{-\left(-32\right)±40}{2}
Tuhia te pūtakerua o te 1600.
k=\frac{32±40}{2}
Ko te tauaro o -32 ko 32.
k=\frac{72}{2}
Nā, me whakaoti te whārite k=\frac{32±40}{2} ina he tāpiri te ±. Tāpiri 32 ki te 40.
k=36
Whakawehe 72 ki te 2.
k=-\frac{8}{2}
Nā, me whakaoti te whārite k=\frac{32±40}{2} ina he tango te ±. Tango 40 mai i 32.
k=-4
Whakawehe -8 ki te 2.
k=36 k=-4
Kua oti te whārite te whakatau.
k^{2}-32k-144=0
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 8k+36.
k^{2}-32k=144
Me tāpiri te 144 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
k^{2}-32k+\left(-16\right)^{2}=144+\left(-16\right)^{2}
Whakawehea te -32, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -16. Nā, tāpiria te pūrua o te -16 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
k^{2}-32k+256=144+256
Pūrua -16.
k^{2}-32k+256=400
Tāpiri 144 ki te 256.
\left(k-16\right)^{2}=400
Tauwehea k^{2}-32k+256. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k-16\right)^{2}}=\sqrt{400}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
k-16=20 k-16=-20
Whakarūnātia.
k=36 k=-4
Me tāpiri 16 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}