Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-3 ab=1\left(-180\right)=-180
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei k^{2}+ak+bk-180. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-180 2,-90 3,-60 4,-45 5,-36 6,-30 9,-20 10,-18 12,-15
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -180.
1-180=-179 2-90=-88 3-60=-57 4-45=-41 5-36=-31 6-30=-24 9-20=-11 10-18=-8 12-15=-3
Tātaihia te tapeke mō ia takirua.
a=-15 b=12
Ko te otinga te takirua ka hoatu i te tapeke -3.
\left(k^{2}-15k\right)+\left(12k-180\right)
Tuhia anō te k^{2}-3k-180 hei \left(k^{2}-15k\right)+\left(12k-180\right).
k\left(k-15\right)+12\left(k-15\right)
Tauwehea te k i te tuatahi me te 12 i te rōpū tuarua.
\left(k-15\right)\left(k+12\right)
Whakatauwehea atu te kīanga pātahi k-15 mā te whakamahi i te āhuatanga tātai tohatoha.
k^{2}-3k-180=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
k=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-180\right)}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
k=\frac{-\left(-3\right)±\sqrt{9-4\left(-180\right)}}{2}
Pūrua -3.
k=\frac{-\left(-3\right)±\sqrt{9+720}}{2}
Whakareatia -4 ki te -180.
k=\frac{-\left(-3\right)±\sqrt{729}}{2}
Tāpiri 9 ki te 720.
k=\frac{-\left(-3\right)±27}{2}
Tuhia te pūtakerua o te 729.
k=\frac{3±27}{2}
Ko te tauaro o -3 ko 3.
k=\frac{30}{2}
Nā, me whakaoti te whārite k=\frac{3±27}{2} ina he tāpiri te ±. Tāpiri 3 ki te 27.
k=15
Whakawehe 30 ki te 2.
k=-\frac{24}{2}
Nā, me whakaoti te whārite k=\frac{3±27}{2} ina he tango te ±. Tango 27 mai i 3.
k=-12
Whakawehe -24 ki te 2.
k^{2}-3k-180=\left(k-15\right)\left(k-\left(-12\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 15 mō te x_{1} me te -12 mō te x_{2}.
k^{2}-3k-180=\left(k-15\right)\left(k+12\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.