Tīpoka ki ngā ihirangi matua
Whakaoti mō k
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

k^{2}+2k=35
Me tāpiri te 2k ki ngā taha e rua.
k^{2}+2k-35=0
Tangohia te 35 mai i ngā taha e rua.
a+b=2 ab=-35
Hei whakaoti i te whārite, whakatauwehea te k^{2}+2k-35 mā te whakamahi i te tātai k^{2}+\left(a+b\right)k+ab=\left(k+a\right)\left(k+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,35 -5,7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -35.
-1+35=34 -5+7=2
Tātaihia te tapeke mō ia takirua.
a=-5 b=7
Ko te otinga te takirua ka hoatu i te tapeke 2.
\left(k-5\right)\left(k+7\right)
Me tuhi anō te kīanga whakatauwehe \left(k+a\right)\left(k+b\right) mā ngā uara i tātaihia.
k=5 k=-7
Hei kimi otinga whārite, me whakaoti te k-5=0 me te k+7=0.
k^{2}+2k=35
Me tāpiri te 2k ki ngā taha e rua.
k^{2}+2k-35=0
Tangohia te 35 mai i ngā taha e rua.
a+b=2 ab=1\left(-35\right)=-35
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei k^{2}+ak+bk-35. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,35 -5,7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -35.
-1+35=34 -5+7=2
Tātaihia te tapeke mō ia takirua.
a=-5 b=7
Ko te otinga te takirua ka hoatu i te tapeke 2.
\left(k^{2}-5k\right)+\left(7k-35\right)
Tuhia anō te k^{2}+2k-35 hei \left(k^{2}-5k\right)+\left(7k-35\right).
k\left(k-5\right)+7\left(k-5\right)
Tauwehea te k i te tuatahi me te 7 i te rōpū tuarua.
\left(k-5\right)\left(k+7\right)
Whakatauwehea atu te kīanga pātahi k-5 mā te whakamahi i te āhuatanga tātai tohatoha.
k=5 k=-7
Hei kimi otinga whārite, me whakaoti te k-5=0 me te k+7=0.
k^{2}+2k=35
Me tāpiri te 2k ki ngā taha e rua.
k^{2}+2k-35=0
Tangohia te 35 mai i ngā taha e rua.
k=\frac{-2±\sqrt{2^{2}-4\left(-35\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 2 mō b, me -35 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-2±\sqrt{4-4\left(-35\right)}}{2}
Pūrua 2.
k=\frac{-2±\sqrt{4+140}}{2}
Whakareatia -4 ki te -35.
k=\frac{-2±\sqrt{144}}{2}
Tāpiri 4 ki te 140.
k=\frac{-2±12}{2}
Tuhia te pūtakerua o te 144.
k=\frac{10}{2}
Nā, me whakaoti te whārite k=\frac{-2±12}{2} ina he tāpiri te ±. Tāpiri -2 ki te 12.
k=5
Whakawehe 10 ki te 2.
k=-\frac{14}{2}
Nā, me whakaoti te whārite k=\frac{-2±12}{2} ina he tango te ±. Tango 12 mai i -2.
k=-7
Whakawehe -14 ki te 2.
k=5 k=-7
Kua oti te whārite te whakatau.
k^{2}+2k=35
Me tāpiri te 2k ki ngā taha e rua.
k^{2}+2k+1^{2}=35+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
k^{2}+2k+1=35+1
Pūrua 1.
k^{2}+2k+1=36
Tāpiri 35 ki te 1.
\left(k+1\right)^{2}=36
Tauwehea k^{2}+2k+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+1\right)^{2}}=\sqrt{36}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
k+1=6 k+1=-6
Whakarūnātia.
k=5 k=-7
Me tango 1 mai i ngā taha e rua o te whārite.