Tauwehe
\left(k+1\right)\left(k+4\right)
Aromātai
\left(k+1\right)\left(k+4\right)
Tohaina
Kua tāruatia ki te papatopenga
a+b=5 ab=1\times 4=4
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei k^{2}+ak+bk+4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,4 2,2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 4.
1+4=5 2+2=4
Tātaihia te tapeke mō ia takirua.
a=1 b=4
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(k^{2}+k\right)+\left(4k+4\right)
Tuhia anō te k^{2}+5k+4 hei \left(k^{2}+k\right)+\left(4k+4\right).
k\left(k+1\right)+4\left(k+1\right)
Tauwehea te k i te tuatahi me te 4 i te rōpū tuarua.
\left(k+1\right)\left(k+4\right)
Whakatauwehea atu te kīanga pātahi k+1 mā te whakamahi i te āhuatanga tātai tohatoha.
k^{2}+5k+4=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
k=\frac{-5±\sqrt{5^{2}-4\times 4}}{2}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
k=\frac{-5±\sqrt{25-4\times 4}}{2}
Pūrua 5.
k=\frac{-5±\sqrt{25-16}}{2}
Whakareatia -4 ki te 4.
k=\frac{-5±\sqrt{9}}{2}
Tāpiri 25 ki te -16.
k=\frac{-5±3}{2}
Tuhia te pūtakerua o te 9.
k=-\frac{2}{2}
Nā, me whakaoti te whārite k=\frac{-5±3}{2} ina he tāpiri te ±. Tāpiri -5 ki te 3.
k=-1
Whakawehe -2 ki te 2.
k=-\frac{8}{2}
Nā, me whakaoti te whārite k=\frac{-5±3}{2} ina he tango te ±. Tango 3 mai i -5.
k=-4
Whakawehe -8 ki te 2.
k^{2}+5k+4=\left(k-\left(-1\right)\right)\left(k-\left(-4\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -1 mō te x_{1} me te -4 mō te x_{2}.
k^{2}+5k+4=\left(k+1\right)\left(k+4\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}