Whakaoti mō k
k = \frac{14}{5} = 2\frac{4}{5} = 2.8
Tohaina
Kua tāruatia ki te papatopenga
k=\frac{-3}{2}k+7
Tuhia te -\frac{1}{2}\times 3 hei hautanga kotahi.
k=-\frac{3}{2}k+7
Ka taea te hautanga \frac{-3}{2} te tuhi anō ko -\frac{3}{2} mā te tango i te tohu tōraro.
k+\frac{3}{2}k=7
Me tāpiri te \frac{3}{2}k ki ngā taha e rua.
\frac{5}{2}k=7
Pahekotia te k me \frac{3}{2}k, ka \frac{5}{2}k.
k=7\times \frac{2}{5}
Me whakarea ngā taha e rua ki te \frac{2}{5}, te tau utu o \frac{5}{2}.
k=\frac{7\times 2}{5}
Tuhia te 7\times \frac{2}{5} hei hautanga kotahi.
k=\frac{14}{5}
Whakareatia te 7 ki te 2, ka 14.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}