Whakaoti mō k
k=\frac{28}{1-\delta }
\delta \neq 1
Whakaoti mō δ
\delta =\frac{k-28}{k}
k\neq 0
Tohaina
Kua tāruatia ki te papatopenga
k-\delta k=28
Tangohia te \delta k mai i ngā taha e rua.
\left(1-\delta \right)k=28
Pahekotia ngā kīanga tau katoa e whai ana i te k.
\frac{\left(1-\delta \right)k}{1-\delta }=\frac{28}{1-\delta }
Whakawehea ngā taha e rua ki te -\delta +1.
k=\frac{28}{1-\delta }
Mā te whakawehe ki te -\delta +1 ka wetekia te whakareanga ki te -\delta +1.
\delta k+28=k
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\delta k=k-28
Tangohia te 28 mai i ngā taha e rua.
k\delta =k-28
He hanga arowhānui tō te whārite.
\frac{k\delta }{k}=\frac{k-28}{k}
Whakawehea ngā taha e rua ki te k.
\delta =\frac{k-28}{k}
Mā te whakawehe ki te k ka wetekia te whakareanga ki te k.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}