Whakaoti mō k
k = \frac{11}{10} = 1\frac{1}{10} = 1.1
Tohaina
Kua tāruatia ki te papatopenga
10k+2\left(1\times 5+3\right)=2\times 10+7
Me whakarea ngā taha e rua o te whārite ki te 10, arā, te tauraro pātahi he tino iti rawa te kitea o 5,10.
10k+2\left(5+3\right)=2\times 10+7
Whakareatia te 1 ki te 5, ka 5.
10k+2\times 8=2\times 10+7
Tāpirihia te 5 ki te 3, ka 8.
10k+16=2\times 10+7
Whakareatia te 2 ki te 8, ka 16.
10k+16=20+7
Whakareatia te 2 ki te 10, ka 20.
10k+16=27
Tāpirihia te 20 ki te 7, ka 27.
10k=27-16
Tangohia te 16 mai i ngā taha e rua.
10k=11
Tangohia te 16 i te 27, ka 11.
k=\frac{11}{10}
Whakawehea ngā taha e rua ki te 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}