Tīpoka ki ngā ihirangi matua
Whakaoti mō c
Tick mark Image
Whakaoti mō m
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

mc^{2}\psi _{1}=iℏ\frac{\mathrm{d}(\psi _{1})}{\mathrm{d}t}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
c^{2}=\frac{0}{m\psi _{1}}
Mā te whakawehe ki te m\psi _{1} ka wetekia te whakareanga ki te m\psi _{1}.
c^{2}=0
Whakawehe 0 ki te m\psi _{1}.
c=0 c=0
Tuhia te pūtakerua o ngā taha e rua o te whārite.
c=0
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
mc^{2}\psi _{1}=iℏ\frac{\mathrm{d}(\psi _{1})}{\mathrm{d}t}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
mc^{2}\psi _{1}-iℏ\frac{\mathrm{d}(\psi _{1})}{\mathrm{d}t}=0
Tangohia te iℏ\frac{\mathrm{d}(\psi _{1})}{\mathrm{d}t} mai i ngā taha e rua.
-iℏ\frac{\mathrm{d}(\psi _{1})}{\mathrm{d}t}+m\psi _{1}c^{2}=0
Whakaraupapatia anō ngā kīanga tau.
m\psi _{1}c^{2}=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
c=\frac{0±\sqrt{0^{2}}}{2m\psi _{1}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi m\psi _{1} mō a, 0 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{0±0}{2m\psi _{1}}
Tuhia te pūtakerua o te 0^{2}.
c=\frac{0}{2m\psi _{1}}
Whakareatia 2 ki te m\psi _{1}.
c=0
Whakawehe 0 ki te 2m\psi _{1}.
mc^{2}\psi _{1}=iℏ\frac{\mathrm{d}(\psi _{1})}{\mathrm{d}t}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\psi _{1}c^{2}m=0
He hanga arowhānui tō te whārite.
m=0
Whakawehe 0 ki te c^{2}\psi _{1}.