Whakaoti mō c
\left\{\begin{matrix}\\c=0\text{, }&\text{unconditionally}\\c\in \mathrm{C}\text{, }&\psi _{1}=0\text{ or }m=0\end{matrix}\right.
Whakaoti mō m
\left\{\begin{matrix}\\m=0\text{, }&\text{unconditionally}\\m\in \mathrm{C}\text{, }&\psi _{1}=0\text{ or }c=0\end{matrix}\right.
Tohaina
Kua tāruatia ki te papatopenga
mc^{2}\psi _{1}=iℏ\frac{\mathrm{d}(\psi _{1})}{\mathrm{d}t}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
c^{2}=\frac{0}{m\psi _{1}}
Mā te whakawehe ki te m\psi _{1} ka wetekia te whakareanga ki te m\psi _{1}.
c^{2}=0
Whakawehe 0 ki te m\psi _{1}.
c=0 c=0
Tuhia te pūtakerua o ngā taha e rua o te whārite.
c=0
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
mc^{2}\psi _{1}=iℏ\frac{\mathrm{d}(\psi _{1})}{\mathrm{d}t}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
mc^{2}\psi _{1}-iℏ\frac{\mathrm{d}(\psi _{1})}{\mathrm{d}t}=0
Tangohia te iℏ\frac{\mathrm{d}(\psi _{1})}{\mathrm{d}t} mai i ngā taha e rua.
-iℏ\frac{\mathrm{d}(\psi _{1})}{\mathrm{d}t}+m\psi _{1}c^{2}=0
Whakaraupapatia anō ngā kīanga tau.
m\psi _{1}c^{2}=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
c=\frac{0±\sqrt{0^{2}}}{2m\psi _{1}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi m\psi _{1} mō a, 0 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{0±0}{2m\psi _{1}}
Tuhia te pūtakerua o te 0^{2}.
c=\frac{0}{2m\psi _{1}}
Whakareatia 2 ki te m\psi _{1}.
c=0
Whakawehe 0 ki te 2m\psi _{1}.
mc^{2}\psi _{1}=iℏ\frac{\mathrm{d}(\psi _{1})}{\mathrm{d}t}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\psi _{1}c^{2}m=0
He hanga arowhānui tō te whārite.
m=0
Whakawehe 0 ki te c^{2}\psi _{1}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}