Aromātai
-1+3i
Wāhi Tūturu
-1
Tohaina
Kua tāruatia ki te papatopenga
-1+2i^{9}-i^{11}
Tātaihia te i mā te pū o 6, kia riro ko -1.
-1+2i-i^{11}
Tātaihia te i mā te pū o 9, kia riro ko i.
-1+2i-\left(-i\right)
Tātaihia te i mā te pū o 11, kia riro ko -i.
-1+2i+i
Ko te tauaro o -i ko i.
-1+3i
Tāpirihia te -1+2i ki te i, ka -1+3i.
Re(-1+2i^{9}-i^{11})
Tātaihia te i mā te pū o 6, kia riro ko -1.
Re(-1+2i-i^{11})
Tātaihia te i mā te pū o 9, kia riro ko i.
Re(-1+2i-\left(-i\right))
Tātaihia te i mā te pū o 11, kia riro ko -i.
Re(-1+2i+i)
Ko te tauaro o -i ko i.
Re(-1+3i)
Tāpirihia te -1+2i ki te i, ka -1+3i.
-1
Ko te wāhi tūturu o -1+3i ko -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}