Whakaoti mō x
x=-iy-z
Whakaoti mō y
y=i\left(x+z\right)
Tohaina
Kua tāruatia ki te papatopenga
-x-iy=z
Tātaihia te i mā te pū o 2, kia riro ko -1.
-x=z+iy
Me tāpiri te iy ki ngā taha e rua.
-x=iy+z
He hanga arowhānui tō te whārite.
\frac{-x}{-1}=\frac{iy+z}{-1}
Whakawehea ngā taha e rua ki te -1.
x=\frac{iy+z}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x=-\left(iy+z\right)
Whakawehe z+iy ki te -1.
-x-iy=z
Tātaihia te i mā te pū o 2, kia riro ko -1.
-iy=z+x
Me tāpiri te x ki ngā taha e rua.
-iy=x+z
He hanga arowhānui tō te whārite.
\frac{-iy}{-i}=\frac{x+z}{-i}
Whakawehea ngā taha e rua ki te -i.
y=\frac{x+z}{-i}
Mā te whakawehe ki te -i ka wetekia te whakareanga ki te -i.
y=ix+iz
Whakawehe z+x ki te -i.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}