Tauwehe
-5\left(x-6\right)\left(x+2\right)
Aromātai
-5\left(x-6\right)\left(x+2\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
5\left(-x^{2}+4x+12\right)
Tauwehea te 5.
a+b=4 ab=-12=-12
Whakaarohia te -x^{2}+4x+12. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -x^{2}+ax+bx+12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,12 -2,6 -3,4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
-1+12=11 -2+6=4 -3+4=1
Tātaihia te tapeke mō ia takirua.
a=6 b=-2
Ko te otinga te takirua ka hoatu i te tapeke 4.
\left(-x^{2}+6x\right)+\left(-2x+12\right)
Tuhia anō te -x^{2}+4x+12 hei \left(-x^{2}+6x\right)+\left(-2x+12\right).
-x\left(x-6\right)-2\left(x-6\right)
Tauwehea te -x i te tuatahi me te -2 i te rōpū tuarua.
\left(x-6\right)\left(-x-2\right)
Whakatauwehea atu te kīanga pātahi x-6 mā te whakamahi i te āhuatanga tātai tohatoha.
5\left(x-6\right)\left(-x-2\right)
Me tuhi anō te kīanga whakatauwehe katoa.
-5x^{2}+20x+60=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-20±\sqrt{20^{2}-4\left(-5\right)\times 60}}{2\left(-5\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-20±\sqrt{400-4\left(-5\right)\times 60}}{2\left(-5\right)}
Pūrua 20.
x=\frac{-20±\sqrt{400+20\times 60}}{2\left(-5\right)}
Whakareatia -4 ki te -5.
x=\frac{-20±\sqrt{400+1200}}{2\left(-5\right)}
Whakareatia 20 ki te 60.
x=\frac{-20±\sqrt{1600}}{2\left(-5\right)}
Tāpiri 400 ki te 1200.
x=\frac{-20±40}{2\left(-5\right)}
Tuhia te pūtakerua o te 1600.
x=\frac{-20±40}{-10}
Whakareatia 2 ki te -5.
x=\frac{20}{-10}
Nā, me whakaoti te whārite x=\frac{-20±40}{-10} ina he tāpiri te ±. Tāpiri -20 ki te 40.
x=-2
Whakawehe 20 ki te -10.
x=-\frac{60}{-10}
Nā, me whakaoti te whārite x=\frac{-20±40}{-10} ina he tango te ±. Tango 40 mai i -20.
x=6
Whakawehe -60 ki te -10.
-5x^{2}+20x+60=-5\left(x-\left(-2\right)\right)\left(x-6\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -2 mō te x_{1} me te 6 mō te x_{2}.
-5x^{2}+20x+60=-5\left(x+2\right)\left(x-6\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}