Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

t\left(-t+20\right)
Tauwehea te t.
-t^{2}+20t=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
t=\frac{-20±\sqrt{20^{2}}}{2\left(-1\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-20±20}{2\left(-1\right)}
Tuhia te pūtakerua o te 20^{2}.
t=\frac{-20±20}{-2}
Whakareatia 2 ki te -1.
t=\frac{0}{-2}
Nā, me whakaoti te whārite t=\frac{-20±20}{-2} ina he tāpiri te ±. Tāpiri -20 ki te 20.
t=0
Whakawehe 0 ki te -2.
t=-\frac{40}{-2}
Nā, me whakaoti te whārite t=\frac{-20±20}{-2} ina he tango te ±. Tango 20 mai i -20.
t=20
Whakawehe -40 ki te -2.
-t^{2}+20t=-t\left(t-20\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 0 mō te x_{1} me te 20 mō te x_{2}.