Whakaoti mō r
r=\frac{h\left(s+t\right)}{t}
s\neq -t\text{ and }t\neq 0
Whakaoti mō h
h=\frac{rt}{s+t}
s\neq -t\text{ and }t\neq 0
Tohaina
Kua tāruatia ki te papatopenga
h=r\times \frac{1}{\frac{t}{t}+\frac{s}{t}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{t}{t}.
h=r\times \frac{1}{\frac{t+s}{t}}
Tā te mea he rite te tauraro o \frac{t}{t} me \frac{s}{t}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
h=r\times \frac{t}{t+s}
Whakawehe 1 ki te \frac{t+s}{t} mā te whakarea 1 ki te tau huripoki o \frac{t+s}{t}.
h=\frac{rt}{t+s}
Tuhia te r\times \frac{t}{t+s} hei hautanga kotahi.
\frac{rt}{t+s}=h
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
rt=h\left(s+t\right)
Whakareatia ngā taha e rua o te whārite ki te s+t.
rt=hs+ht
Whakamahia te āhuatanga tohatoha hei whakarea te h ki te s+t.
tr=hs+ht
He hanga arowhānui tō te whārite.
\frac{tr}{t}=\frac{h\left(s+t\right)}{t}
Whakawehea ngā taha e rua ki te t.
r=\frac{h\left(s+t\right)}{t}
Mā te whakawehe ki te t ka wetekia te whakareanga ki te t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}