Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(z^{3}+4z\right)\left(z^{2}+2z-24\right)}{\left(z^{2}-16\right)\left(z^{2}+3z-18\right)}
Whakawehe \frac{z^{3}+4z}{z^{2}-16} ki te \frac{z^{2}+3z-18}{z^{2}+2z-24} mā te whakarea \frac{z^{3}+4z}{z^{2}-16} ki te tau huripoki o \frac{z^{2}+3z-18}{z^{2}+2z-24}.
\frac{z\left(z-4\right)\left(z+6\right)\left(z^{2}+4\right)}{\left(z-4\right)\left(z-3\right)\left(z+4\right)\left(z+6\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{z\left(z^{2}+4\right)}{\left(z-3\right)\left(z+4\right)}
Me whakakore tahi te \left(z-4\right)\left(z+6\right) i te taurunga me te tauraro.
\frac{z^{3}+4z}{z^{2}+z-12}
Me whakaroha te kīanga.
\frac{\left(z^{3}+4z\right)\left(z^{2}+2z-24\right)}{\left(z^{2}-16\right)\left(z^{2}+3z-18\right)}
Whakawehe \frac{z^{3}+4z}{z^{2}-16} ki te \frac{z^{2}+3z-18}{z^{2}+2z-24} mā te whakarea \frac{z^{3}+4z}{z^{2}-16} ki te tau huripoki o \frac{z^{2}+3z-18}{z^{2}+2z-24}.
\frac{z\left(z-4\right)\left(z+6\right)\left(z^{2}+4\right)}{\left(z-4\right)\left(z-3\right)\left(z+4\right)\left(z+6\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{z\left(z^{2}+4\right)}{\left(z-3\right)\left(z+4\right)}
Me whakakore tahi te \left(z-4\right)\left(z+6\right) i te taurunga me te tauraro.
\frac{z^{3}+4z}{z^{2}+z-12}
Me whakaroha te kīanga.