Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(y^{2}-y-12\right)\left(81y^{3}-25y\right)}{\left(9y^{3}-5y^{2}\right)\left(4y-16\right)}
Me whakarea te \frac{y^{2}-y-12}{9y^{3}-5y^{2}} ki te \frac{81y^{3}-25y}{4y-16} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{y\left(y-4\right)\left(9y-5\right)\left(y+3\right)\left(9y+5\right)}{4\left(y-4\right)\left(9y-5\right)y^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{\left(y+3\right)\left(9y+5\right)}{4y}
Me whakakore tahi te y\left(y-4\right)\left(9y-5\right) i te taurunga me te tauraro.
\frac{9y^{2}+32y+15}{4y}
Me whakaroha te kīanga.
\frac{\left(y^{2}-y-12\right)\left(81y^{3}-25y\right)}{\left(9y^{3}-5y^{2}\right)\left(4y-16\right)}
Me whakarea te \frac{y^{2}-y-12}{9y^{3}-5y^{2}} ki te \frac{81y^{3}-25y}{4y-16} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{y\left(y-4\right)\left(9y-5\right)\left(y+3\right)\left(9y+5\right)}{4\left(y-4\right)\left(9y-5\right)y^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{\left(y+3\right)\left(9y+5\right)}{4y}
Me whakakore tahi te y\left(y-4\right)\left(9y-5\right) i te taurunga me te tauraro.
\frac{9y^{2}+32y+15}{4y}
Me whakaroha te kīanga.