Tauwehe
\left(2x-1\right)\left(3x-2\right)\left(x+1\right)
Aromātai
\left(2x-1\right)\left(3x-2\right)\left(x+1\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x+1\right)\left(6x^{2}-7x+2\right)
Tā te Rational Root Theorem, ko ngā pūtake whakahau katoa o tētahi pūrau kei te āhua o \frac{p}{q}, ina wehea e p te kīanga pūmau 2, ā, ka wehea e q te whakarea arahanga 6. Ko tetahi pūtake pērā ko -1. Tauwehea te pūrau mā te whakawehe mā te x+1.
a+b=-7 ab=6\times 2=12
Whakaarohia te 6x^{2}-7x+2. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 6x^{2}+ax+bx+2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-12 -2,-6 -3,-4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 12.
-1-12=-13 -2-6=-8 -3-4=-7
Tātaihia te tapeke mō ia takirua.
a=-4 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -7.
\left(6x^{2}-4x\right)+\left(-3x+2\right)
Tuhia anō te 6x^{2}-7x+2 hei \left(6x^{2}-4x\right)+\left(-3x+2\right).
2x\left(3x-2\right)-\left(3x-2\right)
Tauwehea te 2x i te tuatahi me te -1 i te rōpū tuarua.
\left(3x-2\right)\left(2x-1\right)
Whakatauwehea atu te kīanga pātahi 3x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
\left(3x-2\right)\left(2x-1\right)\left(x+1\right)
Me tuhi anō te kīanga whakatauwehe katoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}