Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x\left(-x-3\right)
Tauwehea te x.
-x^{2}-3x=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}}}{2\left(-1\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-3\right)±3}{2\left(-1\right)}
Tuhia te pūtakerua o te \left(-3\right)^{2}.
x=\frac{3±3}{2\left(-1\right)}
Ko te tauaro o -3 ko 3.
x=\frac{3±3}{-2}
Whakareatia 2 ki te -1.
x=\frac{6}{-2}
Nā, me whakaoti te whārite x=\frac{3±3}{-2} ina he tāpiri te ±. Tāpiri 3 ki te 3.
x=-3
Whakawehe 6 ki te -2.
x=\frac{0}{-2}
Nā, me whakaoti te whārite x=\frac{3±3}{-2} ina he tango te ±. Tango 3 mai i 3.
x=0
Whakawehe 0 ki te -2.
-x^{2}-3x=-\left(x-\left(-3\right)\right)x
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -3 mō te x_{1} me te 0 mō te x_{2}.
-x^{2}-3x=-\left(x+3\right)x
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.