Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(x^{3}+6x\right)\left(x^{2}+2x-48\right)}{\left(x^{2}-36\right)\left(x^{2}+3x-40\right)}
Whakawehe \frac{x^{3}+6x}{x^{2}-36} ki te \frac{x^{2}+3x-40}{x^{2}+2x-48} mā te whakarea \frac{x^{3}+6x}{x^{2}-36} ki te tau huripoki o \frac{x^{2}+3x-40}{x^{2}+2x-48}.
\frac{x\left(x-6\right)\left(x+8\right)\left(x^{2}+6\right)}{\left(x-6\right)\left(x-5\right)\left(x+6\right)\left(x+8\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{x\left(x^{2}+6\right)}{\left(x-5\right)\left(x+6\right)}
Me whakakore tahi te \left(x-6\right)\left(x+8\right) i te taurunga me te tauraro.
\frac{x^{3}+6x}{x^{2}+x-30}
Me whakaroha te kīanga.
\frac{\left(x^{3}+6x\right)\left(x^{2}+2x-48\right)}{\left(x^{2}-36\right)\left(x^{2}+3x-40\right)}
Whakawehe \frac{x^{3}+6x}{x^{2}-36} ki te \frac{x^{2}+3x-40}{x^{2}+2x-48} mā te whakarea \frac{x^{3}+6x}{x^{2}-36} ki te tau huripoki o \frac{x^{2}+3x-40}{x^{2}+2x-48}.
\frac{x\left(x-6\right)\left(x+8\right)\left(x^{2}+6\right)}{\left(x-6\right)\left(x-5\right)\left(x+6\right)\left(x+8\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{x\left(x^{2}+6\right)}{\left(x-5\right)\left(x+6\right)}
Me whakakore tahi te \left(x-6\right)\left(x+8\right) i te taurunga me te tauraro.
\frac{x^{3}+6x}{x^{2}+x-30}
Me whakaroha te kīanga.