Tauwehe
10\left(1-p\right)\left(6p+1\right)
Aromātai
10+50p-60p^{2}
Tohaina
Kua tāruatia ki te papatopenga
10\left(-6p^{2}+5p+1\right)
Tauwehea te 10.
a+b=5 ab=-6=-6
Whakaarohia te -6p^{2}+5p+1. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -6p^{2}+ap+bp+1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,6 -2,3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
-1+6=5 -2+3=1
Tātaihia te tapeke mō ia takirua.
a=6 b=-1
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(-6p^{2}+6p\right)+\left(-p+1\right)
Tuhia anō te -6p^{2}+5p+1 hei \left(-6p^{2}+6p\right)+\left(-p+1\right).
6p\left(-p+1\right)-p+1
Whakatauwehea atu 6p i te -6p^{2}+6p.
\left(-p+1\right)\left(6p+1\right)
Whakatauwehea atu te kīanga pātahi -p+1 mā te whakamahi i te āhuatanga tātai tohatoha.
10\left(-p+1\right)\left(6p+1\right)
Me tuhi anō te kīanga whakatauwehe katoa.
-60p^{2}+50p+10=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
p=\frac{-50±\sqrt{50^{2}-4\left(-60\right)\times 10}}{2\left(-60\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
p=\frac{-50±\sqrt{2500-4\left(-60\right)\times 10}}{2\left(-60\right)}
Pūrua 50.
p=\frac{-50±\sqrt{2500+240\times 10}}{2\left(-60\right)}
Whakareatia -4 ki te -60.
p=\frac{-50±\sqrt{2500+2400}}{2\left(-60\right)}
Whakareatia 240 ki te 10.
p=\frac{-50±\sqrt{4900}}{2\left(-60\right)}
Tāpiri 2500 ki te 2400.
p=\frac{-50±70}{2\left(-60\right)}
Tuhia te pūtakerua o te 4900.
p=\frac{-50±70}{-120}
Whakareatia 2 ki te -60.
p=\frac{20}{-120}
Nā, me whakaoti te whārite p=\frac{-50±70}{-120} ina he tāpiri te ±. Tāpiri -50 ki te 70.
p=-\frac{1}{6}
Whakahekea te hautanga \frac{20}{-120} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
p=-\frac{120}{-120}
Nā, me whakaoti te whārite p=\frac{-50±70}{-120} ina he tango te ±. Tango 70 mai i -50.
p=1
Whakawehe -120 ki te -120.
-60p^{2}+50p+10=-60\left(p-\left(-\frac{1}{6}\right)\right)\left(p-1\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{1}{6} mō te x_{1} me te 1 mō te x_{2}.
-60p^{2}+50p+10=-60\left(p+\frac{1}{6}\right)\left(p-1\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
-60p^{2}+50p+10=-60\times \frac{-6p-1}{-6}\left(p-1\right)
Tāpiri \frac{1}{6} ki te p mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-60p^{2}+50p+10=10\left(-6p-1\right)\left(p-1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 6 i roto i te -60 me te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}