Aromātai
100000g
Kimi Pārōnaki e ai ki g
100000
Tohaina
Kua tāruatia ki te papatopenga
g\times 16\times 5\times 125\times 10
Whakareatia te 2 ki te 8, ka 16.
g\times 80\times 125\times 10
Whakareatia te 16 ki te 5, ka 80.
g\times 10000\times 10
Whakareatia te 80 ki te 125, ka 10000.
g\times 100000
Whakareatia te 10000 ki te 10, ka 100000.
\frac{\mathrm{d}}{\mathrm{d}g}(g\times 16\times 5\times 125\times 10)
Whakareatia te 2 ki te 8, ka 16.
\frac{\mathrm{d}}{\mathrm{d}g}(g\times 80\times 125\times 10)
Whakareatia te 16 ki te 5, ka 80.
\frac{\mathrm{d}}{\mathrm{d}g}(g\times 10000\times 10)
Whakareatia te 80 ki te 125, ka 10000.
\frac{\mathrm{d}}{\mathrm{d}g}(g\times 100000)
Whakareatia te 10000 ki te 10, ka 100000.
100000g^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
100000g^{0}
Tango 1 mai i 1.
100000\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
100000
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}