Whakaoti mō f (complex solution)
\left\{\begin{matrix}f=-\frac{3\left(x-3\right)}{g}\text{, }&g\neq 0\\f\in \mathrm{C}\text{, }&x=0\text{ or }\left(x=3\text{ and }g=0\right)\end{matrix}\right.
Whakaoti mō g (complex solution)
\left\{\begin{matrix}g=-\frac{3\left(x-3\right)}{f}\text{, }&f\neq 0\\g\in \mathrm{C}\text{, }&x=0\text{ or }\left(x=3\text{ and }f=0\right)\end{matrix}\right.
Whakaoti mō f
\left\{\begin{matrix}f=-\frac{3\left(x-3\right)}{g}\text{, }&g\neq 0\\f\in \mathrm{R}\text{, }&x=0\text{ or }\left(x=3\text{ and }g=0\right)\end{matrix}\right.
Whakaoti mō g
\left\{\begin{matrix}g=-\frac{3\left(x-3\right)}{f}\text{, }&f\neq 0\\g\in \mathrm{R}\text{, }&x=0\text{ or }\left(x=3\text{ and }f=0\right)\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
fgx=9x-3x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te 3-x.
gxf=9x-3x^{2}
He hanga arowhānui tō te whārite.
\frac{gxf}{gx}=\frac{3x\left(3-x\right)}{gx}
Whakawehea ngā taha e rua ki te gx.
f=\frac{3x\left(3-x\right)}{gx}
Mā te whakawehe ki te gx ka wetekia te whakareanga ki te gx.
f=\frac{3\left(3-x\right)}{g}
Whakawehe 3x\left(3-x\right) ki te gx.
fgx=9x-3x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te 3-x.
fxg=9x-3x^{2}
He hanga arowhānui tō te whārite.
\frac{fxg}{fx}=\frac{3x\left(3-x\right)}{fx}
Whakawehea ngā taha e rua ki te fx.
g=\frac{3x\left(3-x\right)}{fx}
Mā te whakawehe ki te fx ka wetekia te whakareanga ki te fx.
g=\frac{3\left(3-x\right)}{f}
Whakawehe 3x\left(3-x\right) ki te fx.
fgx=9x-3x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te 3-x.
gxf=9x-3x^{2}
He hanga arowhānui tō te whārite.
\frac{gxf}{gx}=\frac{3x\left(3-x\right)}{gx}
Whakawehea ngā taha e rua ki te gx.
f=\frac{3x\left(3-x\right)}{gx}
Mā te whakawehe ki te gx ka wetekia te whakareanga ki te gx.
f=\frac{3\left(3-x\right)}{g}
Whakawehe 3x\left(3-x\right) ki te gx.
fgx=9x-3x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te 3-x.
fxg=9x-3x^{2}
He hanga arowhānui tō te whārite.
\frac{fxg}{fx}=\frac{3x\left(3-x\right)}{fx}
Whakawehea ngā taha e rua ki te fx.
g=\frac{3x\left(3-x\right)}{fx}
Mā te whakawehe ki te fx ka wetekia te whakareanga ki te fx.
g=\frac{3\left(3-x\right)}{f}
Whakawehe 3x\left(3-x\right) ki te fx.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}