Whakaoti mō a
a=-\frac{3}{5fx}
x\neq 0\text{ and }f\neq 0
Whakaoti mō f
f=-\frac{3}{5ax}
a\neq 0\text{ and }x\neq 0
Graph
Tohaina
Kua tāruatia ki te papatopenga
fxa=-\frac{3}{5}
Ka taea te hautanga \frac{-3}{5} te tuhi anō ko -\frac{3}{5} mā te tango i te tohu tōraro.
\frac{fxa}{fx}=-\frac{\frac{3}{5}}{fx}
Whakawehea ngā taha e rua ki te fx.
a=-\frac{\frac{3}{5}}{fx}
Mā te whakawehe ki te fx ka wetekia te whakareanga ki te fx.
a=-\frac{3}{5fx}
Whakawehe -\frac{3}{5} ki te fx.
fxa=-\frac{3}{5}
Ka taea te hautanga \frac{-3}{5} te tuhi anō ko -\frac{3}{5} mā te tango i te tohu tōraro.
axf=-\frac{3}{5}
He hanga arowhānui tō te whārite.
\frac{axf}{ax}=-\frac{\frac{3}{5}}{ax}
Whakawehea ngā taha e rua ki te xa.
f=-\frac{\frac{3}{5}}{ax}
Mā te whakawehe ki te xa ka wetekia te whakareanga ki te xa.
f=-\frac{3}{5ax}
Whakawehe -\frac{3}{5} ki te xa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}