Whakaoti mō g
g=\frac{x^{2}}{6}-x+\frac{5}{3}-\frac{1}{3x}
x\neq 0
Graph
Tohaina
Kua tāruatia ki te papatopenga
-6x^{2}+11x-6gx=x+2-x^{3}
Tangohia te x^{3} mai i ngā taha e rua.
11x-6gx=x+2-x^{3}+6x^{2}
Me tāpiri te 6x^{2} ki ngā taha e rua.
-6gx=x+2-x^{3}+6x^{2}-11x
Tangohia te 11x mai i ngā taha e rua.
-6gx=-10x+2-x^{3}+6x^{2}
Pahekotia te x me -11x, ka -10x.
\left(-6x\right)g=2-10x+6x^{2}-x^{3}
He hanga arowhānui tō te whārite.
\frac{\left(-6x\right)g}{-6x}=\frac{2-10x+6x^{2}-x^{3}}{-6x}
Whakawehea ngā taha e rua ki te -6x.
g=\frac{2-10x+6x^{2}-x^{3}}{-6x}
Mā te whakawehe ki te -6x ka wetekia te whakareanga ki te -6x.
g=\frac{x^{2}}{6}-x+\frac{5}{3}-\frac{1}{3x}
Whakawehe -10x+2-x^{3}+6x^{2} ki te -6x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}