Aromātai
\frac{\left(x+2\right)x^{3}}{x+6}
Whakaroha
\frac{x^{4}+2x^{3}}{x+6}
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{3}\left(\frac{x+6}{x+6}-\frac{4}{x+6}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x+6}{x+6}.
x^{3}\times \frac{x+6-4}{x+6}
Tā te mea he rite te tauraro o \frac{x+6}{x+6} me \frac{4}{x+6}, me tango rāua mā te tango i ō raua taurunga.
x^{3}\times \frac{x+2}{x+6}
Whakakotahitia ngā kupu rite i x+6-4.
\frac{x^{3}\left(x+2\right)}{x+6}
Tuhia te x^{3}\times \frac{x+2}{x+6} hei hautanga kotahi.
\frac{x^{4}+2x^{3}}{x+6}
Whakamahia te āhuatanga tohatoha hei whakarea te x^{3} ki te x+2.
x^{3}\left(\frac{x+6}{x+6}-\frac{4}{x+6}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x+6}{x+6}.
x^{3}\times \frac{x+6-4}{x+6}
Tā te mea he rite te tauraro o \frac{x+6}{x+6} me \frac{4}{x+6}, me tango rāua mā te tango i ō raua taurunga.
x^{3}\times \frac{x+2}{x+6}
Whakakotahitia ngā kupu rite i x+6-4.
\frac{x^{3}\left(x+2\right)}{x+6}
Tuhia te x^{3}\times \frac{x+2}{x+6} hei hautanga kotahi.
\frac{x^{4}+2x^{3}}{x+6}
Whakamahia te āhuatanga tohatoha hei whakarea te x^{3} ki te x+2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}